Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Medical Genetics ; (6): 1017-1020, 2021.
Article in Chinese | WPRIM | ID: wpr-921989

ABSTRACT

OBJECTIVE@#To explore the influence of long non-coding (lnc) RNA Gm15645 on the podocyte injury in mice with diabetic nephropathy.@*METHODS@#Male db/db mice (with Type 2 diabetes) with a genetic background of C57BLKs/J and db/m mice (healthy) born in littermates were randomly divided into three groups. db/db group was injected with lncRNAGm15645 shRNA lentivirus with a podocyte-specific marker NPHS2; db/db blank group was injected with saline, and db/db control group was injected withnon-sense lentivirus. The results of PAS staining, pathological changes of renal tissue, relative expression of GSK-3beta, and podocin expression were compared.@*RESULTS@#lncRNAGm15 645 was overexpressed and podocin was down-regulated in the lentivirus overexpressed group. Mesangial cell proliferation, mesangial matrix hyperplasia, thickened basement membrane, widely fused foot process, and podocyte injury were observed by PAS staining. The expression of Gm15645 in the db/db group was significantly lower than that of the db/db blank group and db/db control group (P< 0.05), while the expression of podocin was higher (P< 0.05). Gm15645 was co-stained with podocin in renal tissue, and the target gene was GSK-3beta.@*CONCLUSION@#lncRNAGm15645 may provide an early biomarker for the occurrence of podocyte injury in diabetic nephropathy. The mechanism may be related to the feedback regulation of GSK-3beta gene.


Subject(s)
Animals , Male , Mice , Diabetes Mellitus, Type 2 , Diabetic Nephropathies/genetics , Glycogen Synthase Kinase 3 beta , Podocytes , RNA, Long Noncoding/genetics
2.
China Pharmacy ; (12): 2193-2199, 2019.
Article in Chinese | WPRIM | ID: wpr-817157

ABSTRACT

OBJECTIVE: To establish the method for the content determination of astragaloside Ⅳ, emodin and chrysophanol in Jianpi yishen pills (JYP) and to investigate the effects of JYP on calcium, phosphorus metabolism and inflammatory factors in chronic renal failure (CRF) model rats. METHODS: HPLC method was adopted. The determination of astragaloside Ⅳ, emodin and chrysophanol was perform on Agilent Zorbax SB-C18, Agilent TC C18 column, respectively; mobile phase consisted of acetonitrile-water (36 ∶ 64, V/V) and methanol-0.1% phosphoric acid solution (75 ∶ 25, V/V); the detectors were evaporative light-scattering detector and diode-array detector (detection wavelength of 254 nm); the column temperatures were set at 30 ℃and 25 ℃ at the flow rate of 1.0 mL/min; the sample sizes were 20 and 10 μL. SD rats were randomly divided into normal group, model group, Niaoduqing group (1.80 g/kg) and JYP low-dose, medium-dose and high-dose groups (1.71, 3.43, 6.85 g/kg), with 10 rats in each group. Except for normal group, CRF model of other groups were established by 5/6 nephrectomy in other groups. Four months after modeling, normal group and model group were given constant volume of water intragastrically; admi- nistration groups were given relevant medicine intragastrically, once a day, for consecutive 12 weeks. The levels of serum creatinine (Scr), urea nitrogen (BUN), parathyroid hormone (PTH) and inflammatory factors (IL-6, TNF-α) were measured by ELISA. Methyl thymol blue colorimetric method and phosphomolybdic acid method were used to detect the contents of blood calcium and phosphorus. Correlation of inflammatory factors with related calcium and phosphorus metabolism indexes (blood calcium, blood phosphorus, PTH) were investigated with Pearson assay. RESULTS: The linear range of astragaloside Ⅳ, emodin and chrysophanol were 54.537-381.759, 2.960-20.720, 6.318-44.223 μg/mL, respectively. The limits of quantitation were 0.010, 0.288, 0.216 μg/mL; the limits of detection were 0.003, 0.096, 0.072 μg/mL. RSDs of precision, reproducibility and stability tests were all lower than 3.0%. The recoveries were 97.18%-102.33%(RSD<3%,n=9). After modeling (before medication), serum contents of Scr and BUN in model group and administration group were increased significantly, compared with normal group (P<0.01). After medication, above indexes of administration group were decreased significantly, compared with model group and the same group before medication (P<0.01). Compared with normal group, the content of blood calcium were decreased significantly, while the contents of IL-6 and TNF-α were increased significantly (P<0.01). Compared with model group, the content of blood calcium were increased significantly in JYP medium-dose and high-dose groups, while serum content of PTH in Niaoduqing group, serum contents of PTH and IL-6 in JYP medium-dose and high-dose groups as well as serum content of TNF-α in administration group were decreased significantly (P<0.05 or P<0.01). JYP had no significant effect on blood phosphorus in rats, and there was no correlation of inflammatory factors with related calcium and phosphorus metabolism indexes (P>0.05). CONCLUSIONS: The established content determination method is simple, specific and sensitive, and can be used for content determination of astragaloside Ⅳ, emodin and chrysophanol in JYP. JYP can improve renal function of CRF model rats, relieve calcium metabolism disorder and inhibit the expression of inflammatory factors.

SELECTION OF CITATIONS
SEARCH DETAIL